Correction to "Self-similar behavior of plasma fluid equations - II"*

H. SHEN and K. E. LONNGREN [1]

Equation (14) should be changed to read (i.e. $\delta \not \equiv 0$),

$$
\begin{equation*}
X=\mu+v x+\delta t, T=\rho+v t, U=-2 v \mu, V=\delta, W=-2 v w . \tag{14}
\end{equation*}
$$

The resulting invariants for various values of the constants μ, v, ρ and δ are listed below along with the resulting ordinary differential equations (ODE).

CASE I: $\mu \neq 0, v \neq 0, \rho \neq 0, \delta \neq 0$
The invariants are:

$$
\begin{align*}
& I_{1} \equiv \xi=\frac{x+\frac{\mu}{v}}{t+\frac{\rho}{v}}-\frac{\delta}{v}\left[\ln \left(t+\frac{\rho}{v}\right)+\frac{\frac{\rho}{v}}{t+\frac{\rho}{v}}\right] \\
& I_{2} \equiv N_{i}(\xi)=\left(t+\frac{\rho}{v}\right)^{2} n_{i}(x, t) \tag{I-A}\\
& I_{3} \equiv V_{i}(\xi)=v_{i}(x, t)-\frac{\delta}{v} \ln \left(t+\frac{\rho}{v}\right) \\
& I_{4} \equiv N_{e}(\xi)=\left(t+\frac{\rho}{v}\right)^{2} n_{e}(x, t) .
\end{align*}
$$

The ODE are:

$$
\begin{align*}
& -2 N_{i}-\frac{\xi d N_{i}}{d \xi}+\frac{d\left(N_{i} V_{i}\right)}{d \xi}-\frac{\delta}{v} \frac{d N_{i}}{d \xi}=0 \\
& \left(V_{i}-\xi\right) \frac{d V_{i}}{d \xi}+\frac{1}{N_{e}} \frac{d N_{e}}{d \xi}-\frac{\delta}{v}\left(\frac{d V_{i}}{d \xi}-1\right)=0 \tag{I-B}\\
& \frac{d}{d \xi}\left(\frac{1}{N_{e}} \frac{d N_{e}}{d \xi}\right)=N_{e}-N_{i}
\end{align*}
$$

CASE II: $\mu \neq 0, \nu \neq 0, \rho \neq 0, \delta=0$
The invariants are:

$$
\begin{align*}
& I_{1} \equiv \xi=\frac{x+\frac{\mu}{v}}{t+\frac{\rho}{v}}, I_{2} \equiv N_{i}(\xi)=\left(t+\frac{\rho}{v}\right)^{2} n_{i}(x, t), \tag{II-A}\\
& I_{3} \equiv V_{i}(\xi)=v_{i}(x, t), I_{4} \equiv N_{e}(\xi)=\left(t+\frac{\rho}{v}\right)^{2} n_{e}(x, t),
\end{align*}
$$

The ODE are:

$$
\begin{align*}
& -2 N_{i}-\frac{\xi d N_{i}}{d \xi}+\frac{d\left(N_{i} V_{i}\right)}{d \xi}=0 \\
& \left(V_{i}-\xi\right) \frac{d V_{i}}{d \xi}+\frac{1}{N_{e}} \frac{d N_{e}}{d \xi}=0 \tag{II-B}\\
& \frac{d}{d \xi}\left(\frac{1}{N_{e}} \frac{d N_{e}}{d \xi}\right)=N_{e}-N_{i} .
\end{align*}
$$

CASE III: $\mu=0, v=0, \rho \neq 0, \delta \neq 0$
The invariants are:

$$
\begin{align*}
& I_{1} \equiv \xi=\rho x-\frac{\delta t^{2}}{2}, I_{2} \equiv N_{i}(\xi)=n_{i}(x, t) \tag{III-A}\\
& I_{3} \equiv V_{i}(\xi)=\rho v_{i}(x, t)-\delta t, I_{4} \equiv N_{e}(\xi)=n_{\mathbf{c}}(x, t)
\end{align*}
$$

The ODE are:

$$
\begin{align*}
& \frac{d}{d \xi}\left(N_{i} V_{i}\right)=0, \delta+V_{i} \frac{d V_{i}}{d \xi}+\frac{\rho^{2}}{N_{e}} \frac{d N_{e}}{d \xi}=0 \tag{III-B}\\
& \rho^{2} \frac{d}{d \xi}\left(\frac{1}{N_{e}} \frac{d N_{e}}{d \xi}\right)=N_{e}-N_{i} .
\end{align*}
$$

CASE IV: $\mu=0, \nu=0, \rho=0, \delta \neq 0$
The invariants are:

$$
\begin{align*}
& I_{1}=\xi=t, I_{2} \equiv N_{i}(\xi)=n_{i}(x, t), \\
& I_{3} \equiv V_{i}(\xi)=\frac{x}{t}-v_{i}(x, t), I_{4} \equiv N_{e}(\xi)=n_{e}(x, t) . \tag{IV-A}
\end{align*}
$$

The ODE are:

$$
\begin{equation*}
\frac{d N_{i}}{d \xi}=0, \frac{d V_{i}}{d \xi}+\frac{V_{i}}{\xi}=0, N_{e}=N_{i} \tag{IV-B}
\end{equation*}
$$

CASE V: $\mu \neq 0, v=0, \rho \neq 0, \delta=0$
The invariants are:

$$
\begin{align*}
& I_{1} \equiv \xi=x-\frac{\mu}{\rho} t, I_{2} \equiv N_{i}(\xi)=n_{i}(x, t) \tag{V-A}\\
& I_{3} \equiv V_{i}(\xi)=v_{i}(x, t), I_{4} \equiv N_{e}(\xi)=n_{e}(x, t)
\end{align*}
$$

The ODE are:

$$
\begin{align*}
& -\frac{\mu}{\rho} \frac{d N_{i}}{d \xi}+\frac{d\left(N_{i} V_{i}\right)}{d \xi}=0,-\frac{\mu}{\rho} \frac{d V_{i}}{d \xi}+V_{i} \frac{d V_{i}}{d \xi}+\frac{1}{N_{e}} \frac{d N_{e}}{d \xi}=0 \tag{V-B}\\
& \frac{d}{d \xi}\left(\frac{1}{N_{e}} \frac{d N_{e}}{d \xi}\right)=N_{e}-N_{i}
\end{align*}
$$

Cases II and V were discussed by us (Shen and Lonngren [1]) and Cases III and IV were discussed by Zhmudsky (Zhmudsky [2]). Case I has not been noted previously.

REFERENCES

[1] H. Shen and K. E. Lonngren, Self-similar behavior of plasma fluid equations - II, J. Engineering Math, 10 (1976), 135-141.
[2] A. A. Zhmudsky, On the symmetry of plasma slow motion, Ukrainskii Fizicheskii Zhurnal, 3 (1975) 492-496.

* Supported in part by the National Science Foundation Grant ENG 76-15645.

